Прогноз погоды
Прогноз погоды — научно обоснованное предположение о будущем состоянии погоды в определённом пункте или регионе на определённый период. Составляется (разрабатывается) государственными или коммерческими метеорологическими службами на основе методов метеорологии.
Прогнозы делятся по заблаговременности периода, на который даётся прогноз: [1]
- сверхкраткосрочные (СКПП) — до 12 часов;
- краткосрочные (КПП) — от 12 до 36 часов;
- среднесрочные (СПП) — от 36 часов до 10 суток;
- долгосрочные (ДПП) — от 10 суток до сезона (3 месяца);
- сверхдолгосрочные (СДПП) — более чем на 3 месяца (год, несколько лет).
Оправдываемость прогнозов тем ниже, чем выше заблаговременность. Оправдываемость СКПП составляет приблизительно 95-96 % [2] , КПП 85-95 %, СПП 65-80 %, ДПП 60-65 %, СДПП — около 50 %.
Прогнозы погоды делятся по типам в зависимости от целей, для которых они разработаны:
- прогнозы общего пользования (публикуемые в СМИ и на интернет-сайтах) содержат краткую информацию об облачности, атмосферных осадках, атмосферных явлениях, ветре, температуре, влажности воздуха и атмосферном давлении;
- авиационные прогнозы содержат детальную характеристику ветра, видимости, атмосферных явлений, облачности, температуры воздуха;
- морские и речные прогнозы содержат детальную характеристику ветра, волнения, атмосферных явлений, температуры воздуха;
- сельскохозяйственные (агрометеорологические) прогнозы содержат детальную характеристику атмосферных осадков и температуры воздуха.
Первые прогнозы
Первый в истории прогноз погоды появился 1 августа 1861 года в газете Times за авторством Роберта Фицроя. [3] Впоследствии по причине неточности своих прогнозов он совершил самоубийство.
Самый первый телевизионный прогноз погоды был показан в Англии 11 ноября 1936 года.
Источники
- ↑ Наставление по глобальной системе обработки данных. — ВМО, №485. 2003. Женева.
- ↑Александр Семенов.Предел предсказуемости. Независимая газета (24 марта 2010). Архивировано из первоисточника 23 февраля 2012.Проверено 14 августа 2010.
- ↑150 лет первому прогнозу погоды. Би-би-си (1 августа 2011). Архивировано из первоисточника 18 октября 2012.Проверено 25 августа 2012.
См. также
- Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
Wikimedia Foundation . 2010 .
Смотреть что такое «Прогноз погоды» в других словарях:
ПРОГНОЗ ПОГОДЫ — научно обоснованные предположения о будущем состоянии погоды; краткосрочные прогнозы погоды на 1 3 сут и долгосрочные от 5 сут до сезона. прогноз погоды может быть выполнен на основе анализа синоптических карт погоды (синоптический прогноз… … Большой Энциклопедический словарь
ПРОГНОЗ ПОГОДЫ — ПРОГНОЗ ПОГОДЫ, технология, позволяющая предопределить и описать будущую ПОГОДУ для данного времени и места. Существует тройная классификация прогнозов в зависимости от длительности охватываемого периода. Краткосрочный прогноз охватывает… … Научно-технический энциклопедический словарь
Прогноз погоды — (от греческого pr(ó)gn(o)sis предвидение, предсказание) научно обоснованное предположение о предстоящих изменениях погоды, составленное на основе анализа развития крупномасштабных атмосферных процессов (синоптических процессов) и знаний о законах … Энциклопедия техники
прогноз погоды — Составление научно обоснованных предположений о будущем состоянии погоды для определенного периода времени и места … Словарь по географии
прогноз погоды — сущ., кол во синонимов: 1 • метеопрогноз (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
прогноз погоды — научно обоснованные предположения о будущем состоянии погоды; краткосрочные прогнозы погоды на 1 3 суток и долгосрочные от 5 суток до сезона. Прогноз погоды может быть выполнен на основе анализа синоптических карт погоды (синоптический прогноз… … Энциклопедический словарь
прогноз погоды — составление научно обоснованных предположений о будущем состоянии погоды, а также сами эти предположения. Как правило, прогноз погоды выполняется с применением синоптического метода, т. е. анализа и прогноза положения барических систем – циклонов … Географическая энциклопедия
прогноз погоды — orų prognozė statusas T sritis fizika atitikmenys: angl. weather forecast; weather prognosis vok. Wetterprognose, f; Wettervorhersage, f rus. прогноз погоды, m pranc. prévision du temps, f … Fizikos terminų žodynas
прогноз погоды — oro prognozė statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Mokslinis būsimo oro kitimo numatymas. Oro prognozė gali būti teikiama tam tikram kariuomenės veiksmų punkui, maršrutui, rajonui, jūros rajonui ir pan. Skiriama trumpalaikė … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas
прогноз погоды — orų prognozė statusas T sritis ekologija ir aplinkotyra apibrėžtis Moksliškai pagrįstas orų numatymas remiantis esamų ir praeities atmosferos procesų analize. Remiamasi meteorologijos stočių, radiozondų, dirbtinių Žemės palydovų pateiktais… … Ekologijos terminų aiškinamasis žodynas
Источник
Прогноз
Прогноз (от греч. πρόγνωσις — предвидение, предсказание) — предсказание будущего с помощью научных методов, а также сам результат предсказания.
Прогноз — это вероятностное суждение о будущем состоянии объекта исследования (последнее научное определение).
Прогноз — это научная модель будущего события, явлений и т.п.
Прогноз — это расчет неизвестного экономического показателя по заданным факторам на основании модели.
Прогнозирование — это разработка прогноза; в узком значении — специальное научное исследование конкретных перспектив развития какого-либо процесса.
Основное условие необходимости в прогнозах — это недостаток исходных данных. Для предсказания будущего данных всегда не хватает, однако и при решении задач в настоящем времени данных очень часто не хватает. Чем больше данных отсутвует, тем сложнее их восстанавливать и делать прогноз. По мере сокращения объемов недостающих данных прогнозы уточняются, при полноте исходных данных прогноз замещается обычным расчетом с некоторой погрешностью.
- по срокам: краткосрочные, среднесрочные, долгосрочные, дальнесрочные;
- по масштабу: личные, на уровне предприятия (организации), местные, региональные, отраслевые, страновые, мировые (глобальные).
К основным методам прогнозирования относятся
Содержание
Основные понятия прогностики
Прогностика — научная дисциплина, изучающая общие принципы и методы прогнозирования развития объектов любой природы, закономерности процесса разработки прогнозов. Как наука прогностика сформировалась в 70 — 80 годы ХХ столетия. Кроме понятия «прогностика», в литературе используют термин футурология. Как любая наука прогностика имеет набор своих терминов, употребляемых для обозначения определенных понятий. Определения понятий прогностики были зафиксированы в 1978 году.
Прогноз — обоснованное суждение о возможном состоянии объекта в будущем или альтернативных путях и сроках достижения этих состояний.
Прогнозирование — процесс разработки прогноза. Этап прогнозирования — часть процесса разработки прогнозов, характеризующаяся своими задачами, методами и результатами. Деление на этапы связано со спецификой построения систематизированного описания объекта прогнозирования, сбора данных, с построением модели, верификацией прогноза.
Прием прогнозирования — одна или несколько математических или логических операций, направленных на получение конкретного результата в процессе разработки прогноза. В качестве приема могут выступать сглаживание динамического ряда, определение компетентности эксперта, вычисление средневзвешенного значения оценок экспертов и т. д.
Модель прогнозирования — модель объекта прогнозирования, исследование которой позволяет получить информацию о возможных состояниях объекта прогнозирования в будущем и (или) путях и сроках их осуществления.
Метод прогнозирования — способ исследования объекта прогнозирования, направленный на разработку прогноза. Методы прогнозирования являются основанием для методик прогнозирования.
Методика прогнозирования — совокупность специальных правил и приемов (одного или нескольких методов) разработки прогнозов.
Прогнозирующая система — система методов и средств их реализации, функционирующая в соответствии с основными принципами прогнозирования. Средствами реализации являются экспертная группа, совокупность программ и т. д. Прогнозирующие системы могут быть автоматизированными и неавтоматизированными.
Прогнозный вариант — один из прогнозов, составляющих группу возможных прогнозов.
Объект прогнозирования — процесс, система, или явление, о состоянии которого даётся прогноз.
Характеристика объекта прогнозирования — качественное или количественное отражение какого-либо свойства объекта прогнозирования.
Переменная объекта прогнозирования — количественная характеристика объекта прогнозирования, которая является или принимается за изменяемую в течение периода основания и (или) периода упреждения прогноза.
Сложность объекта прогнозирования — характеристика объекта прогнозирования, определяющая разнообразие его элементов, свойств и отношений.
Период основания прогноза — промежуток времени, за который используют информацию для разработки прогноза. Этот промежуток времени называют также периодом предыстории.
Период упреждения прогноза — промежуток времени, на который разрабатывается прогноз.
Прогнозный горизонт — максимально возможный период упреждения прогноза заданной точности.
Точность прогноза — оценка доверительного интервала прогноза для заданной вероятности его осуществления.
Достоверность прогноза — оценка вероятности осуществления прогноза для заданного доверительного интервала.
Ошибка прогноза — апостериорная величина отклонения прогноза от действительного состояния объекта.
Источник ошибки прогноза — фактор, способный привести к появлению ошибки прогноза. Различают источники регулярных и нерегулярных ошибок.
Верификация прогноза — оценка достоверности и точности или обоснованности прогноза.
Эксперт — квалифицированный специалист по конкретной проблеме, привлекаемый для вынесения оценки по поставленной задаче прогноза.
При разработке социальных прогнозов в ряде случаев производится выявление мнения представителей различных групп населения, условно приравниваемых к экспертам.
Компетентность эксперта — способность эксперта выносить на базе профессиональных знаний, интуиции и опыта достоверные суждения об объекте прогнозирования. Количественная мера компетентности эксперта называется коэффициентом компетентности.
Экспертная группа — коллектив экспертов, сформированный по определенным правилам для решения поставленной задачи прогноза. Частным случаем экспертной группы выступает экспертная комиссия.
Компетентность группы экспертов — способность экспертной группы выносить суждения об объекте прогнозирования, адекватные мнению генеральной совокупности экспертов. Компетентность экспертной группы определяется различными методиками.
Экспертная оценка — суждение эксперта или экспертной группы относительно поставленной задачи прогноза. В первом случае используется термин «индивидуальная экспертная оценка», во втором — «коллективная экспертная оценка».
Статистические методы прогнозирования
Статистические методы прогнозирования — научная и учебная дисциплина, к основным задачам которой относятся разработка, изучение и применение современных математико-статистических методов прогнозирования на основе объективных данных; развитие теории и практики вероятностно-статистического моделирования экспертных методов прогнозирования; методов прогнозирования в условиях риска и комбинированных методов прогнозирования с использованием совместно экономико-математических и эконометрических (как математико-статистических, так и экспертных) моделей. Научной базой статистических методов прогнозирования является прикладная статистика и теория принятия решений.
Простейшие методы восстановления используемых для прогнозирования зависимостей исходят из заданного временного ряда, т. е. функции, определённой в конечном числе точек на оси времени. Временной ряд при этом часто рассматривается в рамках той или иной вероятностной модели, вводятся другие факторы (независимые переменные), помимо времени, например, объем денежной массы. Временной ряд может быть многомерным. Основные решаемые задачи — интерполяция и экстраполяция. Метод наименьших квадратов в простейшем случае (линейная функция от одного фактора) был разработан К. Гауссом в 1794—1795 гг. Могут оказаться полезными предварительные преобразования переменных, например, логарифмирование. Наиболее часто используется метод наименьших квадратов при нескольких факторах. Метод наименьших модулей, сплайны и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше.
Оценивание точности прогноза (в частности, с помощью доверительных интервалов) — необходимая часть процедуры прогнозирования. Обычно используют вероятностно-статистические модели восстановления зависимости, например, строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Применяются также эвристические приемы, не основанные на вероятностно-статистической теории: метод скользящих средних, метод экспоненциального сглаживания.
Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения — основной на настоящий момент статистический аппарат прогнозирования. Нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно; однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной Центральной Предельной Теореме теории вероятностей, технологии линеаризации и наследования сходимости [4]. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от 0 в непараметрической постановке, строить доверительные границы для прогноза.
Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен, желательно его сократить, и крупное направление современных исследований посвящено методам отбора «информативного множества признаков». Однако эта проблема пока еще окончательно не решена. Проявляются необычные эффекты. Так, установлено, что обычно используемые оценки степени полинома имеют в асимптотике геометрическое распределение [1, 3]. Перспективны непараметрические методы оценивания плотности вероятности и их применения для восстановления регрессионной зависимости произвольного вида. Наиболее общие результаты в этой области получены с помощью подходов статистики нечисловых данных.
К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса-Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах.
Для установления возможности применения асимптотических результатов при конечных (т. н. «малых») объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстреп-методов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.
Прогнозирование на основе данных, имеющих нечисловую природу, в частности, прогнозирование качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, в частности, определение и расчет нотны и рационального объема выборки, а также регрессионный анализ нечетких данных, разработанный в [5]. Общая постановка [1] регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи — дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем), давая единый подход к формально различным методам, полезна при программной реализации современных статистических методов прогнозирования.
Основными процедурами обработки прогностических экспертных оценок являются проверка согласованности, кластер-анализ и нахождение группового мнения. Проверка согласованности мнений экспертов, выраженных ранжировками, проводится с помощью коэффициентов ранговой корреляции Кендалла и Спирмена, коэффициента ранговой конкордации Кендалла и Бэбингтона Смита. Используются параметрические модели парных сравнений — Терстоуна, Бредли-Терри-Льюса — и непараметрические модели теории люсианов [1, 3]. Полезна процедура согласования ранжировок и классификаций путем построения согласующих бинарных отношений. При отсутствии согласованности разбиение мнений экспертов на группы сходных между собой проводят методом ближайшего соседа или другими методами кластерного анализа (автоматического построения классификаций, распознавания образов без учителя). Классификация люсианов осуществляется на основе вероятностно-статистической модели.
Используют различные методы построения итогового мнения комиссии экспертов. Своей простотой выделяются методы средних арифметических и медиан рангов. Компьютерное моделирование [3] позволило установить ряд свойств медианы Кемени, часто рекомендуемой для использования в качестве итогового (обобщенного, среднего) мнения комиссии экспертов. Интерпретация закона больших чисел для нечисловых данных в терминах теории экспертного опроса такова: итоговое мнение устойчиво, то есть мало меняется при изменении состава экспертной комиссии, и при росте числа экспертов приближается к «истине». При этом в соответствии с принятым в [4] подходом предполагается, что ответы экспертов можно рассматривать как результаты измерений с ошибками, все они — независимые одинаково распределенные случайные элементы, вероятность принятия определенного значения убывает по мере удаления от некоторого центра — «истины», а общее число экспертов достаточно велико.
Многочисленны примеры ситуаций, связанных с социальными, технологическими, экономическими, политическими, экологическими и другими рисками. Именно в таких ситуациях обычно и необходимо прогнозирование. Известны различные виды критериев, используемых в теории принятия решений [2] в условиях неопределенности (риска). Из-за противоречивости решений, получаемых по различным критериям, очевидна необходимость применения оценок экспертов.
В конкретных задачах прогнозирования необходимо провести классификацию рисков, поставить задачу оценивания конкретного риска, провести структуризацию риска, в частности, построить деревья причин (в другой терминологии, деревья отказов) и деревья последствий (деревья событий). Центральной задачей является построение групповых и обобщенных показателей, например, показателей конкурентоспособности и качества. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов.
Современные компьютерные технологии прогнозирования основаны на интерактивных статистических методах прогнозирования с использованием баз эконометрических данных, имитационных (в том числе на основе применения метода статистических испытаний) и экономико-математических динамических моделей, сочетающих экспертные, математико-статистические и моделирующие блоки.
Основные виды прогнозов
Относится к уровню технологического развития в прогнозируемой сфере, помогая проанализировать будущие веяния технологий.
Анализ будущего состояния экономических факторов, влияющих на развитие деятельности организации.
Прогнозирование факторов, влияющих на будущий спрос.
Предсказание возможных изменений и дальнейшей стратегии деятельности конкурентов
Прогноз изменения социальных установок людей, а также настроения общества, в целом.
Приложения (компьютерные) для прогнозирования
Для прогнозирования по временному ряду используют компьютерные программы — инструменты прогнозирования. Это позволяет автоматизировать большую часть операций при построении прогноза, а также позволяет избежать ошибок, связанных с вводом данных. Такие приложения могут быть как локальными (для использования на одном компьютере), так и интернет-приложениями (доступными в виде веб-сайта, например). В качестве локальных приложений следует выделить такие программы, как SPSS, Statistica, Forecast Expert.
Источник